\(\int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [537]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 155 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {(1+i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 (i A+3 B) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d} \]

[Out]

(1+I)*(I*A+B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)*cot(d*x+c)^(1/2)*tan(d*
x+c)^(1/2)/d-2/3*A*cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(1/2)/d-2/3*(I*A+3*B)*cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c
))^(1/2)/d

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {4326, 3679, 12, 3625, 211} \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {(1+i) \sqrt {a} (B+i A) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 (3 B+i A) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d} \]

[In]

Int[Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

((1 + I)*Sqrt[a]*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c
 + d*x]]*Sqrt[Tan[c + d*x]])/d - (2*(I*A + 3*B)*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(3*d) - (2*A*Co
t[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(3*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx \\ & = -\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {1}{2} a (i A+3 B)-a A \tan (c+d x)\right )}{\tan ^{\frac {3}{2}}(c+d x)} \, dx}{3 a} \\ & = -\frac {2 (i A+3 B) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (4 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int -\frac {3 a^2 (A-i B) \sqrt {a+i a \tan (c+d x)}}{4 \sqrt {\tan (c+d x)}} \, dx}{3 a^2} \\ & = -\frac {2 (i A+3 B) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\left ((A-i B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = -\frac {2 (i A+3 B) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (2 i a^2 (A-i B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {(1+i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 (i A+3 B) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.15 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.79 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {\sqrt {\cot (c+d x)} \left (3 \sqrt {2} (i A+B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}-2 (i A+3 B+A \cot (c+d x)) \sqrt {a+i a \tan (c+d x)}\right )}{3 d} \]

[In]

Integrate[Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(Sqrt[Cot[c + d*x]]*(3*Sqrt[2]*(I*A + B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*
Sqrt[I*a*Tan[c + d*x]] - 2*(I*A + 3*B + A*Cot[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]]))/(3*d)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 560 vs. \(2 (126 ) = 252\).

Time = 0.56 (sec) , antiderivative size = 561, normalized size of antiderivative = 3.62

method result size
derivativedivides \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i A \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-3 i B \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 B \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-12 B \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 A \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}-8 A \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-4 i A \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+12 i B \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+4 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{6 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(561\)
default \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i A \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-3 i B \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 B \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-12 B \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 A \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}-8 A \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-4 i A \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+12 i B \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+4 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{6 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(561\)

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/6/d*(1/tan(d*x+c))^(5/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)*(3*I*A*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d
*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^3-3*I*B*ln(-(-2*2^(1/2)
*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^2
+3*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c
)+I))*a*tan(d*x+c)^3-12*B*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*A*ln(-(-2*2^(1/2)*
(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^2-
8*A*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-4*I*A*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*
x+c)))^(1/2)*tan(d*x+c)^2+12*I*B*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)+4*I*A*(a*tan(d*
x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 430 vs. \(2 (118) = 236\).

Time = 0.25 (sec) , antiderivative size = 430, normalized size of antiderivative = 2.77 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + 4 \, \sqrt {2} {\left ({\left (2 i \, A + 3 \, B\right )} e^{\left (3 i \, d x + 3 i \, c\right )} - 3 \, B e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{6 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/6*(3*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x
+ I*c) + (d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sq
rt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - I*c)/(I*A + B)) - 3*sqrt(2)*(d*e^(2*I*d
*x + 2*I*c) - d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x + I*c) - (d*e^(2*I*d*x + 2*
I*c) - d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) +
 I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - I*c)/(I*A + B)) + 4*sqrt(2)*((2*I*A + 3*B)*e^(3*I*d*x + 3*I*c) - 3
*B*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) -
1)))/(d*e^(2*I*d*x + 2*I*c) - d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1157 vs. \(2 (118) = 236\).

Time = 0.50 (sec) , antiderivative size = 1157, normalized size of antiderivative = 7.46 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(2*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*((3*(-(I - 1)*A - (I + 1)*B)*cos
(3*d*x + 3*c) + (-(I - 1)*A + (3*I + 3)*B)*cos(d*x + c) + 3*((I + 1)*A - (I - 1)*B)*sin(3*d*x + 3*c) + ((I + 1
)*A + (3*I - 3)*B)*sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + (3*(-(I + 1)*A + (
I - 1)*B)*cos(3*d*x + 3*c) + (-(I + 1)*A - (3*I - 3)*B)*cos(d*x + c) + 3*(-(I - 1)*A - (I + 1)*B)*sin(3*d*x +
3*c) + (-(I - 1)*A + (3*I + 3)*B)*sin(d*x + c))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt
(a) + 3*(2*((-(I + 1)*A + (I - 1)*B)*cos(2*d*x + 2*c)^2 + (-(I + 1)*A + (I - 1)*B)*sin(2*d*x + 2*c)^2 + 2*((I
+ 1)*A - (I - 1)*B)*cos(2*d*x + 2*c) - (I + 1)*A + (I - 1)*B)*arctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)
^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*sin(d*x + c),
2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c) - 1)) + 2*cos(d*x + c)) + (((I - 1)*A + (I + 1)*B)*cos(2*d*x + 2*c)^2 + ((I - 1)*A + (I + 1)*B
)*sin(2*d*x + 2*c)^2 + 2*(-(I - 1)*A - (I + 1)*B)*cos(2*d*x + 2*c) + (I - 1)*A + (I + 1)*B)*log(4*cos(d*x + c)
^2 + 4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(cos(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2) +
 8*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))))
)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 2*((((-(I - 1)*A - (3*I +
 3)*B)*cos(d*x + c) + ((I + 1)*A - (3*I - 3)*B)*sin(d*x + c))*cos(2*d*x + 2*c)^2 + ((-(I - 1)*A - (3*I + 3)*B)
*cos(d*x + c) + ((I + 1)*A - (3*I - 3)*B)*sin(d*x + c))*sin(2*d*x + 2*c)^2 + 2*(((I - 1)*A + (3*I + 3)*B)*cos(
d*x + c) + (-(I + 1)*A + (3*I - 3)*B)*sin(d*x + c))*cos(2*d*x + 2*c) + (-(I - 1)*A - (3*I + 3)*B)*cos(d*x + c)
 + ((I + 1)*A - (3*I - 3)*B)*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + (((-(I +
 1)*A + (3*I - 3)*B)*cos(d*x + c) + (-(I - 1)*A - (3*I + 3)*B)*sin(d*x + c))*cos(2*d*x + 2*c)^2 + ((-(I + 1)*A
 + (3*I - 3)*B)*cos(d*x + c) + (-(I - 1)*A - (3*I + 3)*B)*sin(d*x + c))*sin(2*d*x + 2*c)^2 + 2*(((I + 1)*A - (
3*I - 3)*B)*cos(d*x + c) + ((I - 1)*A + (3*I + 3)*B)*sin(d*x + c))*cos(2*d*x + 2*c) + (-(I + 1)*A + (3*I - 3)*
B)*cos(d*x + c) + (-(I - 1)*A - (3*I + 3)*B)*sin(d*x + c))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
- 1)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(5/4)*d)

Giac [F]

\[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*cot(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

[In]

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2), x)